Solve the problem of unstructured data with machine learning

INDONESIAKININEWS.COM -  We’re in the midst of a data revolution. The volume of digital data created within the next five years will total t...

INDONESIAKININEWS.COM - We’re in the midst of a data revolution. The volume of digital data created within the next five years will total twice the amount produced so far — and unstructured data will define this new era of digital experiences. 

Unstructured data — information that doesn’t follow conventional models or fit into structured database formats — represents more than 80% of all new enterprise data. 

To prepare for this shift, companies are finding innovative ways to manage, analyze and maximize the use of data in everything from business analytics to artificial intelligence (AI). 

But decision-makers are also running into an age-old problem: How do you maintain and improve the quality of massive, unwieldy datasets?

Fireside chat: Harnessing the power of data and machine learning to unlock transformative customer experiences
With machine learning (ML), that’s how. 

Advancements in ML technology now enable organizations to efficiently process unstructured data and improve quality assurance efforts. 

With a data revolution happening all around us, where does your company fall? Are you saddled with valuable, yet unmanageable datasets — or are you using data to propel your business into the future?

Unstructured data requires more than a copy and paste

There’s no disputing the value of accurate, timely and consistent data for modern enterprises — it’s as vital as cloud computing and digital apps. Despite this reality, however, poor data quality still costs companies an average of $13 million annually. 

MetaBeat will bring together thought leaders to give guidance on how metaverse technology will transform the way all industries communicate and do business on October 4 in San Francisco, CA.

To navigate data issues, you may apply statistical methods to measure data shapes, which enables your data teams to track variability, weed out outliers, and reel in data drift. 

Statistics-based controls remain valuable to judge data quality and determine how and when you should turn to datasets before making critical decisions.

While effective, this statistical approach is typically reserved for structured datasets, which lend themselves to objective, quantitative measurements.

But what about data that doesn’t fit neatly into Microsoft Excel or Google Sheets, including: 
  • Internet of things (IoT): Sensor data, ticker data and log data 
  • Multimedia: Photos, audio and videos
  • Rich media: Geospatial data, satellite imagery, weather data and surveillance data
  • Documents: Word processing documents, spreadsheets, presentations, emails and communications data
When these types of unstructured data are at play, it’s easy for incomplete or inaccurate information to slip into models. 

When errors go unnoticed, data issues accumulate and wreak havoc on everything from quarterly reports to forecasting projections. 

A simple copy and paste approach from structured data to unstructured data isn’t enough — and can actually make matters much worse for your business. 

The common adage, “garbage in, garbage out,” is highly applicable in unstructured datasets. Maybe it’s time to trash your current data approach. 

The do’s and don’ts of applying ML to data quality assurance

When considering solutions for unstructured data, ML should be at the top of your list. That’s because ML can analyze massive datasets and quickly find patterns among the clutter — and with the right training, ML models can learn to interpret, organize and classify unstructured data types in any number of forms. 

For example, an ML model can learn to recommend rules for data profiling, cleansing and standardization — making efforts more efficient and precise in industries like healthcare and insurance. 

Likewise, ML programs can identify and classify text data by topic or sentiment in unstructured feeds, such as those on social media or within email records.

As you improve your data quality efforts through ML, keep in mind a few key do’s and don’ts: 
  • Do automate: Manual data operations like data decoupling and correction are tedious and time-consuming. They’re also increasingly outdated tasks given today’s automation capabilities, which can take on mundane, routine operations and free up your data team to focus on more important, productive efforts. Incorporate automation as part of your data pipeline — just make sure you have standardized operating procedures and governance models in place to encourage streamlined and predictable processes around any automated activities. 
  • Don’t ignore human oversight: The intricate nature of data will always require a level of expertise and context only humans can provide, structured or unstructured. While ML and other digital solutions certainly aid your data team, don’t rely on technology alone. Instead, empower your team to leverage technology while maintaining regular oversight of individual data processes. This balance corrects any data errors that get past your technology measures. From there, you can retrain your models based on those discrepancies. 
  • Do detect root causes: When anomalies or other data errors pop up, it’s often not a singular event. Ignoring deeper problems with collecting and analyzing data puts your business at risk of pervasive quality issues across your entire data pipeline. Even the best ML programs won’t be able to solve errors generated upstream — again, selective human intervention shores up your overall data processes and prevents major errors.
  • Don’t assume quality: To analyze data quality long term, find a way to measure unstructured data qualitatively rather than making assumptions about data shapes. You can create and test “what-if” scenarios to develop your own unique measurement approach, intended outputs and parameters. Running experiments with your data provides a definitive way to calculate its quality and performance, and you can automate the measurement of your data quality itself. This step ensures quality controls are always on and act as a fundamental feature of your data ingest pipeline, never an afterthought.
Your unstructured data is a treasure trove for new opportunities and insights. Yet only 18% of organizations currently take advantage of their unstructured data — and data quality is one of the top factors holding more businesses back. 

As unstructured data becomes more prevalent and more pertinent to everyday business decisions and operations, ML-based quality controls provide much-needed assurance that your data is relevant, accurate, and useful. And when you aren’t hung up on data quality, you can focus on using data to drive your business forward.

Just think about the possibilities that arise when you get your data under control — or better yet, let ML take care of the work for you.

Source: venturebeat


Baerita,2,Berita,23964,Cek Fakta,3,H,151,HUMOR,7,Internasional,1000,Kesehatan,29,Nasional,23000,News,1361,OPINI,81,Politik,6,Seleb,3,Tekno,1,Viral,3,
IndonesiaKiniNews.com: Solve the problem of unstructured data with machine learning
Solve the problem of unstructured data with machine learning
Loaded All Posts Not found any posts VIEW ALL Selengkapnya Balas Cancel reply Hapus Oleh Beranda Halaman Postingan View All RECOMMENDED FOR YOU LABEL ARCHIVE CARI ALL POSTS Not found any post match with your request KEMBALI KE BERANDA Minggu Senin Selasa Rabu Kamis Jum'at Sabtu Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS CONTENT IS PREMIUM Please share to unlock Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy